Nuclear Survivability Overview

Presented to Chemical, Biological, Radiological and Nuclear Survivability Conference

18 May 2011

John Franco Nuclear Survivability Division

Survivability addressed in 2010 Nuclear Posture Review (NPR) and Quadrennial Defense Review (QDR)

- NPR addresses a survivable U.S. response force
 - Continue Minuteman III Life Extension Program to keep the fleet in service to 2030
 - Retain dual-capable bombers with over \$1B over next 5 years to support survivability and improve mission effectiveness of the B-2
 - Make new investments in NC2 system to maximize Presidential decision time in a nuclear crisis
- QDR initiative include
 - Strengthen key supporting capabilities for strategic communications
 - Improve survivability of space systems and infrastructure

OSD has elevated nuclear survivability with a permanent Defense Science Board (DSB)

- Permanent DSB task force to assess all aspects of the survivability of DoD systems and assets to EMP and other nuclear weapons effects
 - Build on the work of the EMP Commission and related DSB efforts
 - "The Nuclear Weapons Effects National Enterprise," May 10
 - "Nuclear Weapon Effects Test, Evaluation, & Simulation," Apr 05
- Task Force to assess the implementation of DoDI 3150.09, CBRN Survivability Policy, and the effectiveness of the management oversight group established by the DoDI
 - Conduct an independent review and assessment of DoD's EMP survivability program and review other matters associated with nuclear survivability

Radiation Output of Nuclear Weapons

The environments of the nuclear weapon are driven by the highly energetic products of underlying nuclear reactions

Near Surface

Exoatmospheric

- X-rays are absorbed near the burst. Radiation is generally less important than blast and shock.
- Fallout can irradiate personnel.

X-Rays 🧹

Endoatmospheric

- Radiation (X, γ) ionizes upper atmosphere.
- Ionized layer produces electromagnetic pulse (EMP) that propagates down to ground.

- Radiation (x, γ, n) travel through vacuum to reach space assets

 Dies off as 1/R²
 - Radiation can kill electronics directly (TREE) or create current pulses in wires (SGEMP) that kill electronics.
 - Bomb debris are contained in earth's magnetic field.
 - This interacts with low orbit assets (total dose) to cause long term kill in days, weeks or months.

Direct Damage to Space Nodes: Exoatmospheric Bursts

Exoatmospheric bursts can directly impair space nodes through a variety of radiation damage mechanisms

Damage to Ground Nodes: EMP from High Altitude Bursts

High Altitude Bursts can also impair Ground and/or Space nodes through the long range effects of EMP

немр	System Size			
Component	10s of meters (A/C Missiles)	~200 meters (Bldgs/Long Lines)	10s of km (Long Lines)	
Early-Time	\checkmark	\checkmark	\checkmark	
Intermediate-Time		\checkmark	\checkmark	
Late time MHD-EMP			\checkmark	

- Permanent Damage
 - Device or Component Failure
 - Not Correctable
 - Loss of Function
 - Key Issue: Mission Impact
 - Abort
 - Degradation
 - None
- <u>Upset</u>
 - Inadvertent Change of System
 State
 - Overt or Latent
 - Temporary Condition
 - Key Issue: Mission Impact
 - Reset; No Impact
 - Reset; Degradation
 - Not Reset; Degradation
 - Not Reset; Abort

UNCLASSIFIED System Architecture/Operational Approaches				
Syster ef	m architecture/operational approaches can be ffective at mitigating the effects of nuclear we	extremely apons		
	Mitigation Approach	System Architecture		
-	 Proliferation/Distribution of Assets 	• TRIAD		
	 Threat Avoidance 	 Mobile Facilities/Command Posts Satellites in GEO Orbit 		
	 Robust Links 	 Network Insensitive to Node Loss Signal Processing (Software/ Hardware) 		
	 Redundancy 	 Multiple Redundant Satellites Multiple Radar Systems 		

UNCLASSIFIED Hardening of Surface Assets to Direct Effects Near surface assets can be hardened to improve their survivability to near-surface bursts **Thermal Pulse** Air Blast Ground Shock/Cratering **Use Reflective Coatings Provide Aerodynamic Shape** Increase Physical Strength **Provide Insulating** Increase Physical Strength or **Design Elastic Response** • **Material** Mass **Reduce Resonant Modes** Use Ablator or Sacrificial . **Build Underground** Shield Improve Ductility **Use Significant Tie Downs** • **Build Underground** /Flexibility Provide Shock Isolators **Build Very Deep** Underground

Hardening of Space Assets to Direct **Effects** Space assets can be hardened to improve survivability and operability against the radiation effects of exoatmospheric bursts Thermomechanical SGEMP Radiation Shielding Shielding **Circuit Design** Material Selection EM Shielding Topology Dose Rate **Total Dose** (TREE) Vinter **Radiation Shielding** Radiation Shielding Parts Selection Hardened Parts **Circuit Design** Circumvention/Reset

Hardening of Assets to EMP

Near surface assets can also be hardened against the effects of EMP from a high-altitude burst

Shielding

- Faraday Cage
- Point of Entry (POE) Control
- EM Gaskets
- Connector Shells
- Rule of Thumb: 20 dB per Shield (I_{out}=10⁻² I_{in})

Interface Design

- Terminal Protection Devices
- Filters
- Current Limiting
- Transformer Isolation

Robust Links

Vinter

Special design techniques can improve link performance in the presence of nuclear weapon induced noise environments

Communication Link Robustness

- Scintillation/Amplitude Fading
 - Modulation selection
 - Low rate encoding/ decoding
 - Message repetition
 - Error correction encoding/decoding
 - Long interleaving
 - Spatial diversity (antenna positioning)
- Blackout
 - Carrier frequency selection
 - Adaptive equalization

Sensor Link Robustness

- Spatial Clutter
 - Spatial filtering
 - Temporal Filtering
- FPA Noise Suppression (e⁻, γ)
 - Shielding
 - Hardware/Software
- Redout (Persistent Optical Background)
 - Signal Processing
 - Hardware/Software

Core Competencies for Survivability

- Weapon outputs to determine requirements
- Rigor in design phase (standards, protocols)
- Technical strategy for each NWE environment
 - Phenomenology-based understanding of nuclear effects
 - Advanced experimentation capability for nuclear weapon environments and effects modeling validation
 - Nuclear survivability hardening technologies
- Sustained expertise in research, development, test, and evaluation

Relative Survivability Criteria by System

System Type	X-rays	Neutrons	Total Dose	Gamma Rate	EMP	Air Blast	Thermal
Strategic Systems							
Missiles	М	М	М	М	Mil Std	L	М
RV/RB	Н	Н	Н	Н	Mil Std	L-M	н
Satellites	L-M	L-M	L-M	L-M	-	-	L-M
C3I	-	М	М	М	Mil Std	М	М
Submarines	-	-	-	-	Mil Std	-	-
Tactical Systems							
Missiles	L	М	М	М	Mil Std	М	М
Airborne	-	М	М	М	Mil Std	L-M	L-M
Fixed Installations	-	L-M	L-M	L-M	Mil Std	Μ	М
Ships	-	L-M	L-M	L-M	Mil Std	М	М
Vehicles	-	L-M	L-M	L-M	Mil Std	М	М
Exposure Levels	cal/cm ²	n/cm ²	rads(Si)	rads(Si)/s	Mil Std	psi	cal/cm ²
H - High	>0.1	>10 ¹³	>104	>10 ⁹	2169B	>10	>80
M - Medium	0.01-0.1	10 ¹¹ -10 ¹³	2X10 ³ -10 ⁴	10 ⁷ -10 ⁹	2169B	2 - 10	10 - 80
L –Low	<0.01	<10 ¹¹	<2X10 ³	<107	2169B	<2	<10

Nuclear Weapons Effects Simulators

Test	Type of Simulator	Size of Test	
X-ray Effects (Hot)	Low Voltage Flash X-ray Machines	Components and small assemblies	
X-ray Effects (Cold)	Plasma Radiators	Components	
Gamma Ray Effects	Flash X-Ray Machines Linear Accelerator Fast Burst Reactor	Components, circuits & equipment	
Total Dose Gamma Effects	Cobalt 60 Fast Burst Reactor	Components, circuits and equipment	
Neutron Effects	Fast Burst Reactor	Components, circuits & equipment	
Blast Effects (Overpressure)	Small Shock Tubes Large Shock Tubes HE Tests	Components, circuits & equipment Small systems & large equipment Vehicles, radars, shelters, etc	
EMP	Pulsed Current Injection Free Field	Equipment, large components Systems	
Thermal Effects	Thermal Radiation Source Flash Lamps & Solar	Equipment, large components Components & materials	
Shock Effects (Dynamic Pressure)	Large Blast Thermal Simulator (LBTS) Explosives	Equipment, large components Systems	

Nuclear HEMP Military Standards

- MIL-STD-2169B HEMP Environment
- MIL-STD-188-125-1 Fixed C⁴I Facilities
- MIL-STD-188-125-2
- MIL-HDBK-423
- MIL-STD-464
 Requirements
- MIL-STD-461F Equipment EMI

Emissions/Susceptibility

- MIL-STD-3023
 Protection
- MIL-STD-XXXX

Aircraft HEMP (draft)

Transportable C⁴I

HEMP Protection C⁴I Facilities

Facilities

System E³

Maritime HEMP Protection (FY09 start)

Summary

- Characteristics of nuclear weapons detonations are well understood
- Mission Impact of Nuclear Weapon Detonation is real and we know how to mitigate the threat
 - Engineering aspects well understood
 - Testing options are available
- Hardening is affordable if addressed up front
- Radiation hardening is a part of balanced survivability